Deep Residual Learning for Image Recognition

Year: 2,016
Journal: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

Residual learning framework to ease the training of deeper neural networks. Layers are reformulated as learning residual functions with reference to layer inputs, instead of learning unreferenced functions. These residual networks are easier to optimize and can gain accuracy from considerably increased depth. Deeper nets with a depth of up to 152 layers that are 8 times deeper than VGG nets are evaluated. 3.57% error rate on ImageNet is achieved. An 28% relative improvement on the COCO object detection dataset is achieved.

Sign In


Reset Password

Please enter your username or email address, you will receive a link to create a new password via email.